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C O N S P E C T U S

The reduction of diverse functional groups is an essential
protocol in organic chemistry. Transition-metal catalysis

has been successfully applied to the reduction of olefins,
alkynes, and many carbonyl compounds via hydrogenation
or hydrosilylation; the latter presenting several advantages
over hydrogenation. Notably, hydrosilylation generally occurs
under mild reaction conditions, and consequently over-re-
duced products are rarely detected. Moreover, the great
majority of hydrosilanes employed in this reaction are eas-
ily handled, inexpensive, or both.

A large number of multiple bonds can be involved in this
context, and the hydrosilylation reaction can be regarded as
a useful method for the synthesis of silicon-containing organic
molecules or a convenient way of reducing organic com-
pounds. Furthermore, the silyl group can also be retained as
a protecting group, a strategy that can be of great useful-
ness in organic synthesis.

Since the first Wilkinson’s catalyst-mediated hydrosilylation of ketones in 1972, metals such as rhodium and iridium have
attracted most of the attention in this area. A wide array of catalytic systems for hydrosilylation reactions is nowadays avail-
able, which has allowed for a great expansion of the synthetic scope of this transformation.

After having been overlooked in the early years, group 11 metals (Cu, Ag, and Au), especially copper, have emerged as
appealing alternatives for hydrosilylation. The use of a stabilized form of copper hydride, the hexameric [(Ph3P)CuH]6, by
Stryker represented a breakthrough in copper-catalyzed reduction reactions. Nowadays, several copper-based catalytic sys-
tems compare well with a variety of reported rhodium-based catalysts, which generally suffer from the high cost of the cat-
alyst. Tertiary phosphine ligands are the most widely used in these transformations. However, other families such as
N-heterocyclic carbenes (NHCs) have shown promising activities.

Compared with copper, little attention has been paid to silver- or gold-based catalysts. Silver salts have been consid-
ered inert towards hydrosilylation, and they are often employed as innocent anion exchange reagents for the in situ gen-
eration of cationic transition metal catalysts. Despite the rare reports available, they have already shown interesting reactivity
profiles, for example, in the chemoselective reduction of aldehydes in the presence of ketones. Furthermore, 1,2-hydride deliv-
ery is favored over 1,4-reductions for R,�-unsaturated carbonyl compounds, in contrast with most copper-based systems.

Introduction
Reduction of carbonyl and pseudocarbonyl func-

tions represents an essential protocol in organic

synthesis.1 Main group metal hydrides, especially

those of boron and aluminum, can accomplish this

transformation, but they are required in stoichio-

metric amounts, which renders them unattractive

for practical, environmental, and economical rea-

sons. Transition-metal catalysis has been success-

fully applied to the reduction of olefins, alkynes,

and many carbonyl compounds via hydrogena-

tion or hydrosilylation.2 Hydrogenation reactions
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often proceed in good yields but usually only under high pres-

sure or at elevated temperature. In contrast, since the first

report of metal-catalyzed hydrosilylation of ketones in the

presence of Wilkinson’s catalyst,3 smooth reaction conditions

can be employed, and consequently, over-reduction products

are rarely detected. Furthermore, the development of chiral

ligands has also allowed for the production of optically active

products under mild and simple conditions.

On the other hand, since a large number of multiple bonds

may be involved, the hydrosilylation reaction can be regarded

as a useful method for the synthesis of a whole family of sil-

icon-containing organic molecules or as a convenient way of

reducing organic compounds. In the hydrosilylation of carbo-

nyl compounds or imines, a hydrosilylation/hydrolysis se-

quence leads to the formation of alcohols and amines, but the

silyl group can also be retained as a protecting group, a strat-

egy that can be of great usefulness in organic synthesis.

Moreover, the great majority of hydrosilanes employed in

this reaction are easy to handle, inexpensive, or both. Poly-

methylhydrosiloxane (PMHS) must be singled out as a very

convenient and most inexpensive reagent.

This Account intends to give a general overview of the pos-

sibilities that metals of group 11 (Cu, Ag, and Au) can offer to

organic chemists in the context of hydrosilylation reactions.4

Although phosphine ligands have been most widely used for

these transformations, here a special focus will be made on

the utilization of N-heterocyclic carbenes (NHCs).5

Copper-Based Catalytic Systems

a. Hydrosilylation of Carbonyl Compounds. The “Cu-H” is

among the earliest metal hydrides reported in the literature,6

but for a long time it was considered to have limited poten-

tial as a reagent in organic chemistry.7 A stabilized form of

copper hydride, the hexameric [(Ph3P)CuH]6, was first reported

by Osborn,8 and Stryker et al. demonstrated its usefulness in

conjugate reductions of a number of R,�-unsaturated carbo-

nyl derivatives with high regioselectivity.9 The main draw-

back of this complex is that it is most effective as a

stoichiometric reducing agent. Catalytic reactions under hydro-

gen atmosphere have been reported, but very careful moni-

toring is required in order to avoid important formation of

over-reduced products.10 Combination of Stryker’s catalyst

with a hydrosilane as hydride source allowed for the regiose-

lective conjugate reduction of carbonyl compounds under

mild conditions.11 Hydrosilylation can be performed asym-

metrically in the presence of a nonracemic ligand.12 In situ

generation of the active species from a copper salt, the li-

gand of choice, and a base is also an efficient and simple

method.13

Alternatively, when using a copper hydride as reducing

agent in a conjugate reduction, the copper enolate interme-

diate can be directly engaged in further reactions rather than

quenched. The intramolecular conjugate reduction/aldol con-

densation tandem reaction was first explored with Stryker’s

reagent as a stiochiometric14 or catalytic15 source of hydride.

The use of other ligands, mainly diphosphines, has allowed for

the generalization of this methodology.16 To date, there is a

single example involving NHC ligands in this tandem reac-

tion.17 With an IMes (IMes ) N,N′-bis(2,4,6-trimethylphe-

nyl)imidazol-2-ylidene) ligand, the direct reduction of the

electrophiles (aldehydes or ketones) was minimized, and good

yields were obtained from a number of electrophilic double

bonds (Scheme 1). A reasonable anti diastereoselectivity was

obtained with this catalytic system.

Interestingly, the conjugate reduction of ketones can be cat-

alyzed by simple copper(I) salts when 1,3-dimethylimidazoli-

dinone (DMI) is used as solvent, which most probably also acts

as a ligand.18 This system was also the first one used for the

hydrosilylation of simple ketones although the process was

stoichiometric in copper.19

Lipshutz et al. achieved the catalytic hydrosilylation of

ketones and aldehydes with Stryker’s catalyst and different

hydrosilanes.20 Further studies, notably regarding the stoichi-

ometry of the reagents and the influence of the ancillary

ligand,21 led to the effective formation of silyl ethers in high

yields at room temperature (Scheme 2).

Additionally, asymmetric versions of this reaction were

reported by the Lipshutz group. Aromatic ketones could be

reduced by PMHS in excellent yields and optical purities using

SCHEME 1. [(NHC)Copper(I)]-Catalyzed Reductive Aldol
Condensation
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a chiral Roche BIPHEP ligand (Scheme 3).22 In the hydrosily-

lation of heteroaromatic ketones, a SEGPHOS ligand was used

instead, in order to ensure good asymmetric inductions.23

The use of Cu-F systems was first studied for the conju-

gate reduction of R,�-unsaturated ketones in stoichiometric

conditions.24 Concomitant with Lipshutz’s work, Riant et al.25

reported that the combination of copper(II) fluoride with a

chiral phosphine catalyzed the hydrosilylation of ketones with

moderate to excellent enantioselectivities (Scheme 4). Low cat-

alyst loadings (down to 0.05 mol %) and compatibility with

the presence of water are important features of this catalytic

system, but above all, an interesting accelerating effect of oxy-

gen allowed for the reactions to proceed under aerobic con-

ditions. Similar results using a dipyridylphosphine were later

reported by Wu and co-workers.26

It is important to note that the beneficial effect of oxygen

is not general to all Cu-F systems and oxygen inhibition

rather than acceleration was observed in the conjugate reduc-

tion of nitroalkenes27 or R,�-unsaturated dinitriles,28 for

example.

A last advantage of Riant’s catalytic system is the use of

BINAP, an inexpensive and readily available ligand. The use

of BINAP in ketone hydrosilylation has been further studied

with two different copper sources, CuCl29 and the air and

moisture stable Cu(OAc)2 · H2O.30 Both systems proved highly

efficient, and the corresponding chiral secondary alcohols

were obtained in good yields and ee’s (Scheme 5).

Interestingly, whereas the enantioselectivity of the reac-

tion was highly dependent on the nature of the silane in the

presence of CuCl, no such effect was observed when using a

copper(II) salt. This suggests two distinct mechanistic path-

ways. In particular, two intermediates that would account for

the silane effect in the presence of copper(I) salts have been

postulated: a copper(III) intermediate resulting from an oxida-

tive addition to a copper(I) hydride or a pentacoordinate sili-

con species generated by the interaction of the same hydride

with a molecule of silane (Scheme 6).

Although no asymmetric versions have been reported yet,

N-heterocyclic carbenes have been shown to be interesting

alternatives to phosphines for the copper-catalyzed hydrosi-

lylation of carbonyl groups. [(NHC)copper(I)] complexes,

[(IPr)CuCl] in particular (IPr ) N,N′-bis(2,6-diisopropylphe-

nyl)imidazol-2-ylidene), were first reported as catalysts in con-

jugate reduction reactions of R,�-unsaturated esters and cyclic

enones.31 High yields were obtained in both reactions in tol-

SCHEME 2. Copper-Catalyzed Hydrosilylation of Ketones

SCHEME 3. Asymmetric Copper-Catalyzed Hydrosilylation of
Aromatic and Heteroaromatic Ketones

SCHEME 4. Copper-Catalyzed Asymmetric Hydrosilylation of
Ketones under Aerobic Conditions

SCHEME 5. BINAP-Based Asymmetric Hydrosilylation of Ketones

SCHEME 6. Postulated Intermediates for the Silane-Dependent
Hydrosilylation Reactions
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uene at room temperature (Scheme 7). Our concomitant work

showed that the same complex could be used in the hydrosi-

lylation of simple ketones to afford the corresponding silyl

ethers in excellent yields.32 For both transformations, the in
situ generation of the active species from a copper salt, a

ligand precursor, and a base was studied and represents an

efficient and simple method. Related copper complexes bear-

ing a tetrahydropyrimidin-2-ylidene have also been reported

to be active in the hydrosilylation reaction of ketones and

aldehydes.33

Despite encouraging preliminary studies, modest results

were obtained for hindered ketones in the presence of

[(IPr)CuCl]. Even if total conversions could be obtained at 80

°C, higher temperatures or extended reaction times were

required for the most challenging substrates.34

A close examination of the ligand influence on the reac-

tion showed that ICy (ICy ) N,N′-bis(cyclohexyl)imidazol-2-

ylidene) was the most suitable ligand for encumbered

substrates. It is noteworthy that the bulkiest carbenes, IAd and

ItBu (IAd ) N,N′-bis(adamantyl)imidazol-2-ylidene; ItBu ) N,N′-
bis(tert-butyl)imidazol-2-ylidene) yielded the hydrosilylated

product in good reaction times (Scheme 8). These results

imply once more that not only steric but also electronic effects

are important in this reaction.35

With [(ICy)CuCl], a number of ketones with varying conges-

tion around the carbonyl function could be reduced efficient-

ly: alkyl, aromatic, aliphatic, cyclic, and bicyclic ketones

(Scheme 9). Even highly congested starting materials yielded

the corresponding silyl ethers in high yields and acceptable

reaction times. The scope of this catalytic system was also

extended to ketones bearing diverse functional groups such

as amine, ether, or halogen.

Despite the broad scope of [(ICy)CuCl], ketones contain-

ing a pyridine or a thiophene ring led to disappointing

results. The reactivity of different carbene precursors in the

hydrosilylation of the 2-acetylpyridine was closely exam-

ined. It was found that in the particular case of heteroaro-

matic ketones, the best results were obtained with SIMes as

ligand (SIMes ) N,N′ -bis(2,4,6-trimethylphenyl)-2,5-dihy-

droimidazol-2-ylidene).

Interestingly, it was also observed that copper(II) salts could

be used in this reaction. Concomitantly, Yun et al. reported

that the hydrosilylation of ketones could be catalyzed by cop-

per(II) salts in combination with an NHC ligand,36 as it had

been previously shown with a chiral phosphine.30 For the

moment, no evidence is available to unequivocally establish

whether the active species is a copper(I) or a copper(II) hydride.

Another family of NHC-containing complexes of general

formula [(NHC)2Cu]X (X ) PF6
- or BF4

-), has recently been the

subject of a thorough study.37 The activity of these cationic

bis-NHC complexes in the hydrosilylation of ketones was

examined, and both the ligand and the counterion showed a

SCHEME 7. [(IPr)CuCl]-Catalyzed Hydrosilylation of Different
Carbonyl Compounds

SCHEME 8. NHC Screening for the Hydrosilylation of Dicyclohexyl
Ketone

SCHEME 9. [(ICy)CuCl]-Catalyzed Hydrosilylation of Hindered and
Functionalized Ketones
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significant influence on the catalytic performance. Whereas

the ligand influence could not be rationalized by using pure

steric or electronic effect arguments, complexes with BF4
-

counterion were systematically superior to their PF6
- ana-

logues. For instance, under the same reaction conditions,

cyclohexanone was quantitatively transformed into the corre-

sponding silyl ether in 2 h in the presence of [(IPr)2Cu]PF6,

whereas only 30 min were required with the borate analogue.

Representative examples of the remarkable catalytic activity of

[(IPr)2Cu]BF4 are shown in Scheme 10: ketones (hindered or

not), aldehydes (also enolizable ones), and esters were suit-

able substrates for this copper complex.

Smoother reaction temperatures and a smaller excess of

hydrosilane are the obvious advantages of these cationic com-

plexes when compared with [(NHC)CuCl]. Moreover, when sub-

mitted to comparable reaction conditions, the cationic species

proved to be more efficient than their neutral analogues

(Scheme 11). Cyclohexanone was more efficiently reduced in

the presence of [(IPr)2Cu]BF4 than with its neutral analogue. For

more hindered ketones, the activity of [(ICy)CuCl] was com-

pared with [(ICy)2Cu]BF4 using dicyclohexyl ketone as sub-

strate. In this case, a faster reaction was obtained with the

neutral complex but under more forcing conditions. However,

when comparable reaction conditions were used (T ) 55 °C,

2 equiv of hydride source), the cationic complex was found to

be the optimum catalyst.

The proposed mechanism for the [(NHC)CuCl]-catalyzed

hydrosilylation of ketones is shown in Scheme 12. First, for-

mation of [(NHC)CuOtBu] from the starting complex and the

base would occur. Then, the active catalyst, an NHC copper

hydride species, would be formed by a σ-bond metathesis

between the copper alkoxide and the hydrosilane. These steps

are supported by the isolation and characterization of both

complexes.38 Hence, [(IPr)CuH] was isolated as an unstable

dimeric complex that readily reacts with a terminal alkyne to

provide the corresponding hydrocupration product. Addition

of the copper hydride to the carbonyl would result in a cop-

per alkoxide that would undergo another σ-bond metathesis

with the hydrosilane to form the expected silyl ether and

regenerate the active catalyst.39

This mechanism is in agreement with the experimental evi-

dence for the phosphine-copper catalytic systems,40 but it

does not explain why an excess of base is generally required

in order to complete the reaction with NHC-based catalytic sys-

tems. Because it is well-known that hydrosilanes are prone to

nucleophilic attack, we proposed that the excess base that is

generally required could interact with the hydrosilane and

facilitate the second σ-bond metathesis.

In the case of the cationic complexes, the activation step of

[(NHC)2Cu]X toward hydrosilylation was investigated by 1H

NMR to find that one of the two NHC ligands is displaced by

tBuO- in the presence of NaOtBu, producing the neutral

[(NHC)CuOtBu], direct precursor of the active species. The

released NHC, being nucleophilic,41 could then ease the

σ-bond metathesis leading to the formation of the silyl ether.

It has been postulated that the difference of activity between

SCHEME 10. [(IPr)2Cu]BF4-Catalyzed Hydrosilylation of Carbonyl
Compounds

SCHEME 11. Catalysts Comparison

a Reaction conditions: Et3SiH (2 equiv), toluene, 55 °C.

SCHEME 12. Proposed Mechanism for the (NHC)Copper-Catalyzed
Hydrosilylation of Ketones
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these two catalytic systems would arise from the more effi-

cient activation of the hydrosilane by the NHC ligand than by

tBuO-.

Moreover, the previously mentioned counterion effect in

the catalytic studies could be rationalized as a consequence of

the difference in solubility in the reaction solvent of the inor-

ganic salts formed (Scheme 13).

b. Hydrosilylation of Unsaturated Functions Other

than Carbonyl Groups. As early as 1967, the copper-cata-

lyzed hydrosilylation of isocyanides was reported.42 It is there-

fore surprising to notice that the activity of copper hydrides

toward unsaturated groups other than the carbonyl bond

remains greatly unexplored.

Two catalytic systems for the copper-catalyzed hydrosily-

lation of imines have been reported so far. A SEGPHOS ligand

has been shown optimal for the effective asymmetric hydrosi-

lylation of aryl ketimines at room temperature. A diphe-

nylphosphinyl moiety was introduced in the starting material

to weaken the otherwise strong copper-nitrogen bond in the

plausible reaction intermediate. CuCl can be used as copper

source,43 and interestingly, copper-in-charcoal is another

attractive alternative (Scheme 14).44 This heterogeneous

reagent was prepared by impregnation of a copper(II) salt

within a charcoal matrix using sonication to promote an even

distribution of metal. A chiral copper(I) hydride would then be

generated by reaction with the ligand and NaOPh in the pres-

ence of a silane. Ketones, R,�-unsaturated ketones, esters, and

lactones were also good substrates for this reagent. Recycling

tests showed that direct utilization of the heterogeneous

reagent, after simple filtration from a reaction mixture,

afforded the comparable yields and ee’s. Notably, no addi-

tion of ligand or base was required for the second run, which

indicates that the chiral phosphine remains most likely seques-

tered by the copper center.

The stoichiometric reaction of alkynes with Stryker’s

reagent led to their selective reduction to cis-alkenes.45 While

terminal alkynes could be reduced at room temperature, inter-

nal alkynes only reacted at high temperatures. However, elec-

tron-withdrawing substituents can activate disubstituted

alkynes toward reduction and acetylenic sulfones could be

transformed into the corresponding cis-vinylic sulfones at

room temperature (Scheme 15).46 The postulated active spe-

cies in this report, a copper(II) hydride, was generated in situ
by the reaction of a divalent copper salt and a hydrosilane.

Such a complex would be an efficient reducing agent for this

kind of alkynes, but unlike most copper(I) hydride species, it

would not effect conjugate reduction.

Alternatively, Sadighi and co-workers reported the hydro-

cupration of 3-hexyne by an isolated dimeric [(NHC)CuH]2
complex.38 Nevertheless, only a particular kind of alkynes has

been thoroughly examined to date with NHC-containing cat-

alytic systems, propargyl oxiranes, which diastereoselectively

yield R-hydroxyallenes diversely functionalized (Scheme

16).47 Of note, this study represents the only example of sub-

stoichiometric copper-catalyzed reduction of alkynes.

Silver-Based Catalytic Systems
Despite the efficiency of copper complexes in the hydrosily-

lation reactions and the growing interest in the gold-catalyzed

version, little attention has been paid to silver-containing cat-

alysts. In fact, silver salts have been considered as inert toward

hydrosilylation, and they are often employed as innocent

anion exchange reagents for the in situ generation of cationic

transition metal catalysts. In this context, while studying car-

bonyl hydrosilylations catalyzed by [(pybox)RhCl3]/AgX sys-

tems (pybox ) 2,6-bis(oxazolinyl)pyridine), Nishiyama and

co-workers observed the ability of free AgX salts to mediate

the hydrosilylation of acetophenone to a certain extent.48

SCHEME 13. Activation of [(NHC)2Cu]X Complexes Toward
Hydrosilylation

SCHEME 14. Copper-Catalyzed Asymmetric Hydrosilylation of
Imines

SCHEME 15. Copper-Catalyzed Reduction of Alkynes
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However, in the presence of the pybox ligand, the silver salts

did not exhibit any catalytic activity.

The first systematic evaluation of silver salts in a hydrosi-

lylation reaction was reported in 2006,49 and AgOTf was

shown to catalyze the hydrosilylation of aldehydes at room

temperature. Lower reaction rates were obtained when a

ligand was used, although cleaner reactions were obtained.

PEt3, PBu3, and 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene

provided comparable high yields, whereas more sterically hin-

dered or branched trialkylphosphines afforded significantly

lower yields. The presence of a ligand had the extra advan-

tage of rendering the transformation chemoselective; an alde-

hyde could be reduced in the presence of a ketone and only

a 1,2-hydride delivery occurred with an R,�-unsaturated alde-

hyde as substrate (Scheme 17).

In a first approach, the isolation of Me2PhSiOTf as a

byproduct in these reactions suggests the possible interme-

diacy of a “AgH” species.

Gold-Based Catalytic Systems
The first gold-catalyzed hydrosilylation of carbonyl com-

pounds was reported in 2000.50 A soluble gold(I) complex in

combination with an excess of phosphine led after hydroly-

sis to the formation of primary alcohols from the correspond-

ing aldehydes (Scheme 18). It is important to note that while

the gold complex was inactive even in the presence of a large

excess of PPh3, the addition of PBu3 resulted in the forma-

tion of the active species of unknown structure to date. Sim-

ilarly to the silver-based catalyst, R,�-unsaturated aldehydes

only reacted in a 1,2-manner with this system, and ketones

were completely inert, which allowed for chemoselective reac-

tions. The reduction of an aldimine was also achieved after a

4 day reaction at room temperature.

Since this first report, fluorine-containing phosphines51 or

alternative gold sources such as [(Me2S)AuCl]52 have been

studied. In all cases, a large excess of a phosphine ligand, typ-

ically PBu3, was required in order to achieve good catalytic

activity. Rather than improving the reaction rate, the role of

the ligand would be to stabilize the active gold species in the

presence of the reducing hydrosilane, preventing the deacti-

vation of the catalyst via formation of gold clusters and metal-

lic gold.53 Further mechanistic studies pointed out that not

only the phosphine but also the starting aldehydes conferred

this stabilizing effect on the gold complex or helped form the

catalytically active species.54

Concluding Remarks
Since the first rhodium-catalyzed hydrosilylation of ketones in

1972,3 considerable efforts have been dedicated to the devel-

opment of more efficient catalysts. After having been over-

looked in the early years, the use of copper-based catalysts for

diverse hydrosilylation reactions is now a well-established and

efficient methodology. A high level of efficiency and selectiv-

ity has been reached, and a number of user-friendly proce-

dures are available. Several catalytic systems presented here

compare well with reported rhodium-based catalysts, which

generally suffer from a strong economical drawback. Nota-

bly, high turnover number (TON) and turnover frequency (TOF)

values were obtained with the copper(I) fluoride-
diphosphine systems reported by Riant25 (TON ) 2000, TOF

) 111 h-1) and Chan26 (TON ) 100, TOF ) 600 h-1) in the

asymmetric hydrosilylation of acetophenone. These values

SCHEME 16. Copper-Catalyzed Reduction of Propargyl Oxiranes

SCHEME 17. Silver-Mediated Chemoselective Hydrosilylation
Reactions

SCHEME 18. Gold-Catalyzed Hydrosilylation of Aldehydes
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compare favorably with the rhodium-diphosphine system

reported by Imamoto55 (TON ) 86, TOF ) 1 h-1) or the pla-

nar P,N ligand-Rh system reported by Fu56 (TON ) 94, TOF

) 5 h-1). However, important improvements need to be made

in order to reach the efficiency of systems like Nishiyama’s

pybox-Rh (TON ) 8700, TOF ) 4300 h-1).48 On the other

hand, Lipstutz’s bisphosphine-copper systems have been

shown to be effective even at substrate-to-ligand ratios of

100 000.22b This value is of special importance since last gen-

eration ligands are usually more expensive than the common

metal sources.

After an initial period of discovery, group 11 systems have

several challenges to overcome. For instance, no copper-based

system has been reported to date for the asymmetric reduc-

tion of dialkyl ketones. Moreover, alkynes, alkenes, or allenes

have been largely ignored in the context of copper-catalyzed

hydrosilylation reactions. Ultimately, the discovery of a “uni-

versal” copper catalyst that would allow for the efficient (asym-

metric) reduction of different families of compounds would be

highly desirable.

The study of diverse families of ligands other than phos-

phines, such as NHCs, or further research around other

group 11 metals could be keys for surmounting these chal-

lenges. Compared with copper, silver and gold have been

scarcely studied in this context, but both metals have

already shown significant complementarities to their neigh-

bor (for instance, 1,2-reductions have been shown as

favored over 1,4-reductions). We believe that the success

encountered so far will encourage further research into the

general scope of copper, silver, and gold hydrosilylation

and related reactions.
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